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SUMMARY

This paper explains how computational �uid mechanics (CFM) concepts can be used to solve the
Monge–Kantorovitch mass transfer type of problems (MKP). Copyright ? 2002 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The interplay between the Monge–Kantorovitch mass transfer problem (MKP) and partial
di�erential equation theory has recently experienced a surge of research activity and is now
considered, in itself, as a branch of applied mathematics (see the surveys References [1; 2]).
In �uid dynamics, the MKP or equivalent concepts notably intervene in the semi-geostrophic

equations [3–6], an intermediate model in the geostrophic to primitive equation hierarchy used
in meteorology. It is also used at the mathematical level in the existence theory of several �uid
mechanics equations such as incompressible Euler with prescribed initial and �nal data [7].
From Monge’s theory ‘des d�eblais et des remblais’ in the late 18th century to present days,

a considerable amount of theoretical work has been gathered. The revival of this subject
follows the pioneering work [8]. The (once again recent) interest of applied mathematicians
in this problem has raised the question of the numerical resolution of the MKP in two and
three dimensions (the resolution being trivial in 1D). The e�ciency of the classical Pogorelov
construction (used in References [3; 9]) is di�cult to evaluate. After and ad hoc discretization
the MKP can also be cast in a combinatorial optimization framework: the linear assignment
problem. Even though there exists an, in principle, near optimal algorithm for this more general
problem [10], the bridge from theory to practice turns out to be di�cult to cross probably
because of a huge unestimated constant a�ecting the cost of this simplex type method.
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We recently established a ‘computational �uid mechanics’ (CFM) type formulation for the
MKP in which the unknowns satisfy a simple gas dynamic model with prescribed initial and
�nal densities [11]. Quite remarkably it is now the reverse application of CFM to the MKP
which allows us to construct a robust and e�cient numerical solver. Moreover, the CFM
approach seems to be quite versatile. The formulation and the numerical method general-
izes for instance to a multi-phasic context [12] and also to a mixed MKP/L2 interpolation
problem [13].
This paper reviews the material contained in References [11–14].

2. THE MKP

A simple and modern formulation of the problem is the following: two bounded, positive
measurable functions �0 and �T with compact support in Rd are given. They are called
densities. We further require that they have the same mass, normalized to 1:

∫
Rd
�0(x) dx=

∫
Rd
�T (x) dx=1 (1)

The problem now is to select a mapping M from Rd to Rd which achieves the ‘transport’
from �0 to �T in the following sense: for all Borel subsets A⊂Rd, M satis�es

∫
M−1(A)

�0(x) dx=
∫
A
�T (x) dx (2)

Equation (2) is a weak formulation of the so-called Jacobian equation

det(DM (x))�T (M (x))=�0(x) (3)

which can be derived when M is a smooth one-to-one map. Here det(DM) is the determinant
of the Jacobi matrix of M and represents the rate of compression or spreading of the mass
induced by the map x �→M (x) (we recall that �0 and �T and M must satisfy (3)). The
Jacobian problem is clearly under-determined (when transferring Dirac masses for instance,
any permutation of the loaded points gives rise to an admissible mapping) and it is natural to
select among the maps satisfying (2) those which are optimal in a suitable sense. The Monge–
Kantorovitch problem consists in choosing the mapping M which satis�es the constraint (2)
and minimizes the ‘transportation’ cost

C(M)=
∫
Rd

‖x −M (x)‖2�0(x) dx (4)

Roughly speaking, ‖x−M (x)‖2�0(x) is the travelled distance squared, weighted by the amount
of the transferred mass. This point-wise interpretation is restrictive and relies on the hypothesis
that M is smooth and one-to-one. The class of mappings M satisfying (2) is of course much
wider and allows for instance to pointwise ‘split’ or ‘coalescing’ mass. Considering this wider
class is also the key to the main theoretical results [8].
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Theorem 2.1
There is a unique optimal mapping �M de�ned on the support of �0 satisfying (2). The
mapping M is characterized as the unique mapping from this class which can be written as
the gradient of a convex potential �:

�M (x)=∇�(x) (5)

The optimal value of the cost (4) also is a distance (squared) called Wasserstein distance
between densities �0 and �T . This distance is usually de�ned as

dWa(�0; �T )2 = inf
�

∫
|x − y|2 d�(x; y) (6)

where � spans the space of probability measures Rd×Rd with marginals �0 and �T . We
therefore have

C( �M)=dWa(�0; �T )2 (7)

Regarding the applications of the MKP in �uid mechanics, we again refer the reader to the
papers (excellent) surveys and monographs cited in Section 1.

3. A CFM FORMULATION FOR THE MKP

The MKP problem described in the above section is a quadratic space minimization problem
in M , with a non-linear, non-convex and highly degenerate constraint (2). We do not know
how to numerically enforce this constraint so we instead proposed a reformulation of the
problem based on the introduction of a ‘time’ variable t. We �rst describe the CFM type
problem and then give its relationship with the classical MKP.
We �x a time interval [0; T ] and consider all possible smooth enough, time-dependent,

density and velocity �elds, �(t; x)¿0, v(t; x)∈Rd, subject to the continuity equation
@t�+∇ · (�v)=0 (8)

for 0¡t¡T and x∈Rd, and the initial and �nal conditions
�(0; ·)=�0; �(T; ·)=�T (9)

Then, our new problem is the minimization of the action

K(�; v)=T
∫
Rd

∫ T

0
�(t; x)|v(t; x)|2 dx dt (10)

amongst all (�; v) satisfying (8) and (9).
Let us point out that a continuum mechanics formulation was already implicitly contained

in the original problem addressed by Monge: ‘le probl�eme des remblais et des d�eblais’. Elim-
inating the time variable was just a clever way of reducing the dimension of the problem.
However, from a computational point of view, reintroducing the time variable allows to solve
a convex (although not quadratic) space-time minimization problem in the density and mo-
mentum variables, namely � and m=�v, with linear constraints. Indeed under this change
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of variable, the integrand of (10) is |m(t; x)|2=2�(t; x) which can be written as the Legen-
dre transform of the indicatrix function of the convex set K= {{a; b} :R×Rd→R×Rd, s.t.
a+ |b|2=260 pointwise}

|m(t; x)|2
2�(t; x)

= sup
{a; b}∈K

[a(t; x)�(t; x) + b(t; x) ·m(t; x)] (11)

and K(�; v) is convex in (�;m=�v). Finally constraint (9) is unchanged but (8) becomes
linear

@t�+∇ ·m=0 (12)

This is, in our opinion, a considerable advantage, in spite of the addition of the extra (but not
arti�cial) time variable. In addition, the continuum mechanics formulation, provides a natural
time interpolant �(t; x) of the data �0 and �T and a velocity �eld v(t; x) which moves �0
toward �T .
The relation between the classical MKP and this ‘CFM’ MKP, formally established in

Reference [11], is given by the following proposition.

Proposition 3.1
The square of the Wasserstein distance is equal to the in�mum of

T
∫
Rd

∫ T

0
�(t; x)|v(t; x)|2 dx dt

among all (�; v) satisfying (8) and (9).
There exists moreover a unique optimal �ow

X (0; x)= x; @tX (t; x)= v(t; X (t; x))

given in terms of the potential �

X (t; x)= x +
t
T
(∇�(x)− x)

A rigorous Hilbertian framework for this problem can be found in Reference [14].
We �nally remark that the optimality conditions of this space-time minimization problem

are

v(t; x)=∇�(t; x) (13)

where the potential � is the Lagrange multiplier associated with the constraints (8), (9), and
the Hamilton–Jacobi equation

@t�+ 1
2 |∇�|2 = 0 (14)

In terms of �uid mechanics, it means that the optimal solution of (14) and (8) is given by a
pressureless potential �ow.
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4. TWO GENERALIZATIONS OF THE MKP

4.1. The multi-phasic mass transfer problem

We here consider a problem which involves multiple phases (��; v�) (�=1; M) with the
constraint that the total mass is prescribed by a given function ��

M∑
�=1
��= �� (15)

Each phase individually satis�es (8)

@t�� +∇(��v�)=0 (16)

initial and �nal conditions like (9)

��(0; ·)=�0� ; ��(T; ·)=�T� (17)

where the �0� and �
1
� are given non-negative functions which satisfy the compatibility condi-

tions
∫
�0� (x) dx=

∫
�T� (x) dx; �=1; : : : ; M (18)

and
∫

M∑
�=1
�0� (x) dx=

∫
��(t; x) dx; t ∈ [0; T ] (19)

The generalization of the MKP now is to minimize the sum of the kinetic energies

K(�; v)=
1
2

M∑
�=1

∫ T

0

∫
��(t; x)|v�(t; x)|2 dx dt (20)

where �=(�1; : : : ; �M ) and v=(v1; : : : ; vM ) satisfy the constraints (15)–(17) above.
This multi-phasic ‘CFM’ MKP problem can be solved numerically using the same technique

as in the mono-phasic case (see Reference [12]). The optimality conditions for the Lagrange
multipliers (��) associated to the constraints (16) and a new multiplier p for the global
constraint (16) are

@t�� +
|∇x��|2
2

+
p
��
=0; �=1; : : : ; M (21)

These equations are again very similar to the optimality equations for the mono-phasic prob-
lem. However, because of the incompressibility constraint (15) a pressure p appears in the
Hamilton–Jacobi equation (21), inducing the expected coupling between all phases. Notice
that, taking ��≡ 1, we recover the homogenized vortex-sheet model discussed in Reference [15]
where the existence of ‘variational solutions’ for this problem is proved.
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4.2. A mixed MKP/L2 interpolation problem

Before explaining this mixed problem, let us point out that it is possible to express the L2

distance using a similar time-dependent formulation. We consider the minimization problem

d2L2 (�0; �1)= inf�; v

{
1
T

∫
Rd

∫ T

0
|@t�(t; x)|2 dx dt

}
(22)

with (�; v) again subject to the constraints (8) and (9). The optimization problem does not
depend on v anymore and the constraint (8) is just mentioned here by analogy with Section 2.1.
We again have a convex minimization problem. The cost function appearing on the right-hand
side of (22) can be di�erentiated, and the optimality conditions simply express the fact that
the optimal �(t; x) satis�es (9) and

@2tt�=0 (23)

The optimal solution is therefore directly given by the time interpolation formula

�(t; x)=
�T (x)− �0(x)

T
t + �0(x) (24)

Replacing @t� in (22), we obtain the claimed L2 distance.
So it is quite tempting to make an intrinsic interpolation between the L2 and Wasserstein

distances. The mixed distance is de�ned likewise by

dwas=L2 (�0; �1)2 = inf
�; v

{
T
∫
Rd

∫ T

0
��(t; x)|v(t; x)|2 + (1− �) |@t�(t; x)|

2

2
dx dt

}
(25)

where (�; v) must again satisfy the constraints (8) and (9). The parameter �∈ [0; 1] is the
interpolation parameter. Of course as �=1 or �=0 we recover, respectively, the Wasserstein
or the L2 distances.
A discussion about the motivation for this object and an illustration of the rather di�er-

ent properties of the L2 and Wasserstein distances can be found in Reference [11] where a
numerical method is proposed to solve (25).

5. NUMERICAL RESOLUTION

The L2 MKP can be written as a saddle-point problem by introducing a space-time dependent
Lagrange multiplier �(t; x) for constraints (8) and (9). The Lagrangian is given by

L(�; �;m)=
∫ T

0

∫
D

[ |m|2
2�

− @t��−∇x� ·m
]
−
∫
D
[�(0; ·)�0 − �(T; ·)�T ] (26)

where the terms involving � come from (8) by integration by part and using the boundary
conditions (9).
Given initial and �nal densities �0 and �T , the L2 MKP is equivalent to the saddle-point

problem:

inf
�;m
sup
�
L(�; �;m) (27)
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timestep 1 timestep 3 timestep 5 timestep 7

timestep 9 timestep 11 timestep 13 timestep 15

timestep 17 timestep 19 timestep 21 timestep 23

timestep 25 timestep 27 timestep 29 timestep 31

Figure 1. Contours plots of the density at successive time steps.

This saddle-point formulation can be recast (using (11)) in a form matching the problem of
the elastoplastic deformation of a cylindrical rod as presented in Reference [16]. In this note,
the Lagrangian is �rst ‘augmented’ and an e�cient algorithm from [16], called ALG2, based
on relaxations of the Uzawa algorithm is used. We follow the same line as in Reference [11]
(and refer to this paper for more details) to solve the problem. We get a three step iterative
method which constructs a sequence converging to the saddle-point. The more expensive part
of the algorithm is the iteration of a space-time Laplace equation.
Our favourite test case is periodic in space and we therefore implicitly consider an in�nite

grid of similar (here square) cells. The initial density is an in�nite array of Gaussian functions
centred inside the cells and the �nal density is the same array but the Gaussian functions have
been shifted to the corners of the cells. As discussed in Reference [11] the optimal Wasserstein
mapping splits the Gaussian in four and sends each part to the corners. The optimal transfer
is not a simple translation, as one would super�cially think, but is rather one that splits each
Gaussian function into four pieces, sending each of them to the nearest corner (Figure 1).
A second approach consists in the elimination of the ‘two point boundary value problem’

by relaxing the �nal constraint on the density �(T; x)=�T and enforce it using a penalization
term added to the cost function. We have used this approach to treat the general mixed
MKP/L2 problem to which the Augmented Lagrangian technique does not seem to apply.
Thus we consider

drelax(�0; �1)2 = inf
m

{
T
∫
Rd

∫ T

0
�
|m|2
2�

+ (1− �)� |@t�|
2

2
dx dt

+
∫
Rd
�
|�(T; x)− �T (x)|2

2
dx

}
(28)
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Figure 2. Contours plots of the density at successive time steps for the Conjugate Gradient
algorithm, �=1; 0:8; 0, �=10.

where � is a positive penalty parameter. Note that � is no more a minimization variable
but a state variable solution of (8) where m and the initial conditions �(0; x)=�0 are given
(we have dropped the �nal condition). This approach simpli�es considerably this optimization
problem which now becomes an optimal control problem. A classical technique to evaluate
the gradient of the cost function is to use direct=adjoint problems. We have done so and
embedded this approach into a conjugate gradient algorithm.
We now present the computation for di�erent values of �. The test case is similar to the

one presented for the augmented Lagrangian method but a small constant has been added
to the density. Indeed this second algorithm is very sensitive to the absence of mass. This
feature is not shared by the Augmented Lagrangian method which seems robust when dealing
with zero values for the mass (e.g. we can treat the case involving characteristic functions).
Figure 2 shows the contours plots of the densities at successive time steps for three di�erent

values of �: �=1 is the pure Wasserstein problem which splits the Gaussian in four parts and
translates the mass to the corners, �=0 is the pure L2 problem which is a simple pointwise
in space and linear in time interpolation between initial and �nal density and �=0:5 is a
mixed problem which ‘interpolates’ between the two extreme behaviour. For all computations
�=10.
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Figure 3. Contours plots of the density at successive time steps for the �rst phase.

Finally, we show a simulation of a bi-phasic transport. The global mass �� is a constant.
The initial and �nal density for the �rst phase is similar to our �rst test case (Figure 1) and
the second phase is completely determined by (15). The numerical method arises from the
augmented Lagrangian technique [12].
The level lines of the �rst density are given in Figure 3. The global mass �� is chosen small

enough so that the mass cannot concentrate above a given level and this e�ect competes with
the transport of the split four parts of the Gaussian observed in Figure 1. The mass is tranferred
in an elongated almond shape to lower its maximum level.
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